REVIEW ARTICLE

Multidrug Resistant *Acinetobacter* in Patient with Ventilator Associated Pneumonia: Review Article

Harsha V. Patil¹, Shivaji T. Mohite¹, Virendra C. Patil^{2*} ¹Department of Microbiology, ²Department of Medicine, Krishna Institute of Medical Sciences, Malkapur-Karad-415110 (Maharashtra) India

Abstract:

Acinetobacter is a complex genus, with multiple species. Acinetobacter species are the common etiology of nosocomial infections, principally nosocomial pneumonia catheter-associated bacteremia and urinary tract infections. Multidrug Resistant (MDR) Ventilator Associated Pneumonia (VAP) by Acinetobacter spp is increasingly reported from different parts of the world. Transmission of Acinetobacter is aid by the organism's environmental stubbornness, resistance to desiccation and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. is primarily by evasion of rapid clearance by the immune system. The capsular polysaccharide is a critical virulence factor that enables immune evasion and lipopolysaccharide triggers septic shock. Conversely, the primary factor of clinical outcome is antibiotic resistance. Acinetobacter spp. has become a discreditable threat for patients on mechanical ventilation. Considering high rate of antibiotic resistance, new preventive and therapeutic alternative approach for MDR Acinetobacter spp. infections are urgently needed. Worldwide drug resistance in Acinetobacter baumannii is growing. This review article is emphasised on incidence of VAP due to MDR Acinetobacter, phenotypes, genotypes, associated risk factors and preventive strategy.

Keywords: *Acinetobacter* spp, Ventilator Associated Pneumonia, Mechanical Ventilation, Multidrug Resistant, Phenotypes, Genotypes

Introduction:

The species *Acinetobacter baumannii* (A. *baumannii*) was largely unknown 30 years ago.

Acinetobacter species (spp) are Gram-negative bacteria that have become one of the most difficult pathogens to treat. It is now a predominant pathogen in many hospitals as it has acquired resistance genes to virtually all antibiotics capable of treating Gram negative bacteria, including the fluoroquinolones and the cephalosporins. Over a decade, nosocomial infections due to A. baumannii have increased towards Multidrug Resistance (MDR), mostly in intensive care units with patients on ventilator. A. baumannii is a rapidly emerging nosocomial pathogen and causes severe infections that include bacteraemia, pneumonia, meningitis, urinary tract and wound infections. It has now become a major cause of nosocomial infection worldwide due to its notable inclination to swiftly acquire resistance to a wide range of antibacterial agents [1]. Ventilator-associated Pneumonia (VAP) is one of the most common Intensive Care Unit (ICU) acquired infection (6 to 52%) and a major cause of morbidity, mortality and increased financial load in ICUs. The overall rate of VAP is higher in developing countries (13.6) ICUs than quoted from the US (3.3 per 1000 ventilator-days). Despite of low virulence, A. baumannii has emerged as MDR pathogen responsible for hospital acquired infections that are difficult to control and treat. A. baumannii has natural MDR phenotype, its capability of acquiring new

mechanisms of resistance. Recently genome sequencing of several A. baumannii isolates, has led to the discovery of the extraordinary plasticity of their genomes, which is linked to their great proclivity to adapt to any environment [2]. In India, VAP caused by MDR-Acinetobacter baumannii (MDR-AB) isolates are associated with significant mortality, morbidity and costs. MDR-AB infections are difficult to treat owing to the extremely limited treatment options [3, 4]. Current knowledge about A. baumannii, including phenotypes, genotype, epidemiological aspects and resistance to antibiotics, are reviewed in this article. The present review reports the incidence of VAP, incidence of MDR VAP due to A. baumannii, risk factors for developing MDR-VAP due to A. baumannii and preventive strategy for MDR in the different parts of world have been discussed.

Rationale of review:

Multidrug resistant among Acinetobacter infection is associated with a high mortality rate and limits the therapeutic options. During the past few decades, Acinetobacter has emerged as an important nosocomial pathogen, affecting patients in the ICU setting, globally. A. baumannii has been recognised as a leading cause of VAP in various parts of the world. VAP remain important causes of morbidity, mortality and financial burden. Increasing antimicrobial resistance has stir up the concern of the failure of antibiotic treatment. VAP due to MDR Acinetobacter has different phenotypes, genotypes, antibiotic resistance pattern and associated risk factors for developing VAP, across the world. We performed a review of MDR-VAP due to A. baumannii.

Database searches and study selection:

Studies included in this review are, cross-

sectional, case-control, cohort studies and systemic review. The relevant studies were identified from searches of the PubMed, Medline, Embase and Scopus databases (using keywords: *A. baumannii*, MDR-Ventilator associated pneumonia, phenotype, and genotype of MDR - *A. baumannii*). All studies included in this review were monitored for the development of VAP using clinical and microbiological criteria, until discharge or death.

The diagnosis of VAP was established on the basis of clinical and radiological parameters as per Centre of Disease Centres (CDC) Guidelines [5].

Diagnostic criteria and case definition for VAP:

VAP is defined as a pneumonia occurring 48 h or more after endotracheal intubation, with new and/or progressive radiological infiltrate, and at least two of the following features:

A. Radiology:

Two or more serial chest radiographs with at least one of the following: New or progressive and persistent infiltrate consolidation, cavitations

B. Signs, symptoms and laboratory

For any patient, at least one of the following:

- Fever (>38°C or >100.4°F) with no other recognized cause
- Leucopoenia (<4000 WBC/mm3) or leukocytosis (>12,000 WBC/mm3)
- For adults >70 years old, altered mental status with no other recognized cause and at least two of the following
 - New onset of purulent sputum or change in character of sputum or increased respiratory secretions, or increased suctioning requirements
 - 2. New onset or worsening cough or dyspnoea or tachypnea

- 3. Rales or bronchial breath sounds
- Worsening gas exchange PaO₂/FiO₂ <240 (increased oxygen requirements or increased ventilator demand
- The Clinical Pulmonary Infection Score (CIP):

(CPIS) is based on six clinical assessments, for patients clinically suspected of VAP on the day of endotracheal secretions collection, (CPIS with score ≥ 6).

Positive quantitative culture of the EA (count $\geq 106 \text{ CFU/mL}$)

MDR pathogens were defined as resistant to three or more classes of antibiotics.

• Early-onset VAP:

Patients developing VAP within the first four days of Mechanical Ventilation (MV) were classified as having early onset VAP

• Late-onset VAP:

Patients developing VAP five or more days after the initiation of MV were classified as having late onset VAP

Microbiological methods:

Susceptibility to different classes of antibiotics was determined by the Kirby Bauer disc diffusion method and interpreted. [Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing] Phenotypic and genotypic resistance to β -lactamases was determined using standard methods [6]. Combination disk method, modified Hodge test, EDTA disk synergy test and AmpC disk test were performed for detection of Extended Spectrum β -lactamases (ESBL), carbapenemases, Metallo- β -lactamases (MBL) and AmpC β -lactamases respectively in various studies. *bla*OXA-23, *bla*OXA-24, *bla*OXA-58, *bla*OXA-51, *bla*TEM, *bla*SHV, *bla*CTX-M, and *bla*PER β-lactamase genes were searched by Polymerase Chain Reaction (PCR) and sequencing. Pulsed-field gel electrophoresis for genotyping and antimicrobial susceptibility testing for clinically relevant antimicrobials were performed in these studies [7]. Resistance determinants were characterized by using different phenotypic (accumulation assay for efflux) and genotypic (PCR, DNA sequencing, plasmid analysis and electroporation) analysed by various studies according to protocol.

Characteristics of Acinetobacter spp:

Gram-negative coccobacilli that were likely Acinetobacter were isolated as early as 1914 and repeatedly through the 1940s but were previously referred to as Mimapolymorphia (now Acinetobacter lwoffii), Herelleavaginicola (now A. baumannii or A. calcoaceticus), Bacterium anitratum, B5W, and Moraxella lwoffii [1]. A. baumannii is a ubiquitous, non-fermenting, aerobic Gram-negative bacterium with intrinsic resistance to multiple antimicrobial drugs [2]. The genus, Acinetobacter, as has been currently defined, comprises Gram-negative, strictly aerobic, nonfermenting, non-fastidious, non-motile, catalasepositive, oxidase-negative, coccobacilli and opportunistic bacteria. A. baumannii is an encapsulated containing proteins, namely porins and efflux channels, on the outer cell membrane, which mainly contribute to their resistance mechanisms. This genus has undergone significant taxonomic modifications over the last 30 years. Compared to other Gram negative bacteria, it has fewer and smaller porin channels, which thereby decrease its cell permeability and increase its antibiotic resistance. The cell wall of the bacteria changes according to the environmental conditions, thus causing an increase in its thicknessThe virulencewhen it is placed in a very dry conditions, thereby
again providing extra resistance at high
temperatures and dormant conditions. A.36, Omp22, 0baumannii is generally considered as opportunisticserum resistance

baumannii is generally considered as opportunistic infections and can be non-pathogenic in healthy individuals [8]. *A. baumannii* is one of the most important nosocomial pathogens because of its longevity in the hospital environment and ability to resist various antimicrobial agents and to colonize susceptible patients treated with broad-spectrum antibiotic [9].

Biology, virulence factors, risk factors for Drug resistance in *Acinetobacter* spp:

Acinetobacter was described by a Dutch microbiologist a century ago, as Micrococcus calcoaceticus known as Acinetobacter in 1950's and more than 25 species have been identified. Most of the cases are usually seen in the ICUs of hospitals, in patients with deprived immunity and in those who are on various invasive equipments, like ventilator machines and catheters. The irrational use of antibiotics in the ICU set up and the various bacterial mechanisms of resistance contribute to summation of resistance function for this untreatable, risky microorganism. Risk factors for colonization or infection with multidrugresistant A. baumannii are prolonged length of hospital stay, exposure to an ICU, mechanical ventilation, prolonged exposure to antimicrobial agents, surgical and invasive procedures, and severe illnesses or comorbidites. Presence of the porin channels, efflux mechanisms and the non static behaviour of the bacteria in hot and humid conditions lead to extensive antimicrobial resistance. There is rising concern about antimicrobial resistance among Acinetobacter spp since the past decade [10].

The virulence factor like Porin (OmpA, Omp33-36, Omp22, CarO, OprD-like) are involved in adherence and invasion, induction of apoptosis, serum resistance, biofilm formation. Capsular Polysaccharides are required for growth in serum, survival in tissue infection, biofilm formation. Capsular Lipopolysaccharides (LPS) and Phospholipase (PLC and PLD) are responsible for Growth in serum, survival in tissue infection, biofilm formation, serum resistance, invasion, in vivo survival. Outer Membrane Vesicle (OMV) is involved in delivery of virulence factors, horizontal transfer of antibiotic resistance gene. A. baumannii NfuA Fe-S scaffold protein, that participates in the formation of Fe-S clusters and plays a role in cell responses to iron chelation and oxidative stress, has also been identified as a virulence factor. Several protein secretion systems have been identified in A. baumannii. The most recently described A. baumannii secretion system is a Type II Secretion System (T2SS). β-lactamase PER-1 has been suggested to be an A. baumannii virulence factor. PER-1 is an ESBL, but this gene is associated with cell adhesion. CipA-binding plasminogen is converted to active plasmin that degrades fibrinogen and complement C3b, which contributes to serum resistance of A. baumannii.

Antimicrobial resistance of A. baumannii

 Beta-Lactamases (VIM/IMP): Inactivation of β-lactams by β-lactamases is a major antibiotic resistance mechanism in *A*. *baumannii*. Based on sequence homology, βlactamases are grouped into molecular classes, A, B, C and D (β-lactamase genes: *bla*OXA-23, *bla*OXA-24, *bla*OXA-58, *bla*OXA-51, *bla*TEM, *bla*SHV, *bla*CTX-M, and *bla*PER) 2. Efflux Pumps:

Efflux pumps are associated with resistance against many different classes of antibiotics, such as imipenem and tigecycline, in *A. baumannii*. The TetB efflux pump is the main determinants of minocycline resistance.

3. Permeability Defects:

A change in envelope permeability can influence antibiotic resistance. For example, porins form channels that allow transport of molecules across the outer membrane

4. Aminoglycoside - Modifying Enzymes: Aminoglycoside-modifying enzymes are the major mechanism by which *A. baumannii* confers resistance to aminoglycosides.

 Alteration of Target Sites: Modifications in antibiotic target sites for antibiotics can induce antibiotic resistance in *A. baumannii*. In the absence of other known resistance mechanisms, only overexpression of altered PBPs with a low affinity for imipenem induces imipenem/carbapenems resistance.

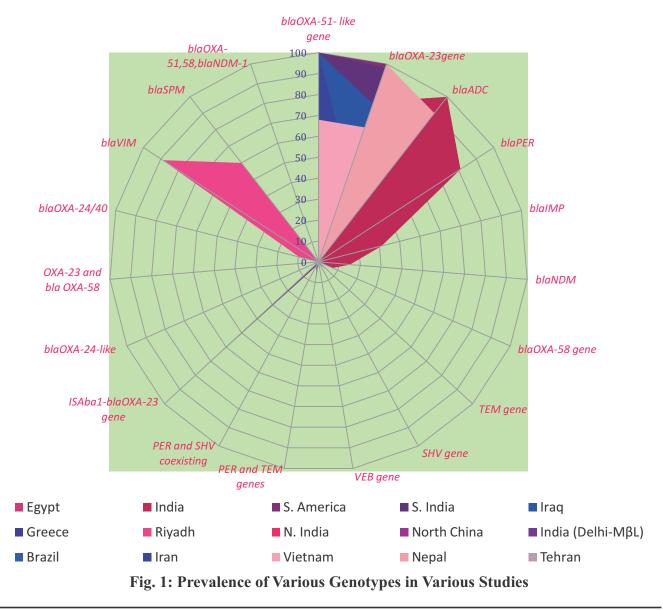
- 6. AdeABC is associated with decreased susceptibility to tigecycline. Quinolone resistance is associated with modifications in GyrA (one subunit of DNA gyrase)
- 7. Change in affinity for binding was seen in case of colistin resistance
- 8. The changes in the membrane binding and changes in bacterial targets due to point mutations in gyrA and parC topoisomerase enzymes confer resistance against quinolones

MDR-AB:

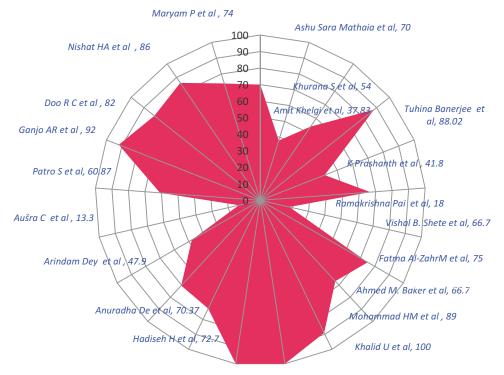
MDR-AB is defined as an *A. baumannii* strain resistant to at least three different groups, penicillins and cephalosporins (including inhibitor

combinations), fluoroquinolones and aminoglycosides, has emerged and has been reported worldwide to significantly increase the morbidity, mortality, and cost of treatment. The incidence of MDR-AB is increasing worldwide. Acinetobacter spp exhibit multidrug resistance through production of β -lactamases, alterations in Outer Membrane Proteins (OMPs) and Penicillin-Binding Proteins (PBPs) and increased activity of efflux pumps. Resistance to β -lactams appears to be primarily caused by production of β -lactamases which include ESBLs, MBLs and oxacillinases. MBLs are classes of powerful enzymes called carbapenemases responsible for antibiotic resistance. Four groups of these enzymes have been described in A. baumannii, including IMPlike, SIM-1, NDM-type, and VIM-like carbapenemases. MBLs-encoding genes are located on integrons that can be transmitted from one bacterial species to another. ESBLs are encoded by TEM-type, SHV-type, and CTX-M-type genes; they are resistance to penicillins and thirdgeneration cephalosporins. The drug of choice to treat nosocomial infection caused by MDR-AB is the carbapenems. However, there is an increasing rate of carbapenem-resistant A. baumannii around the world. Acinetobacter species are distinguished for their intrinsic resistance to antibiotics and for their ability to acquire genes encoding resistance determinants like, production of β-lactamases, aminoglycoside-modifying enzymes, diminished expression of outer membrane proteins, mutations in topoisomerases, and up-regulation of efflux pumps play an important part in antibiotic resistance. The accumulation of multiple mechanisms of resistance leads to the development of multiply resistant or even "panresistant" strains [11]. A. baumannii is labeled as MDR-AB when it

is resistant to more than two of the five classes of antibiotics [cephalosporins (ceftazidime or cefepime), carbapenems (imipenem or meropenem), Ampicillin/sulbactam, Fluoroquinolones (ciprofloxacin or levofloxacin) and Aminoglycosides (gentamicin, tobramycin, or amikacin)]. Carbapenems were considered as the most important agents for the treatment of infections caused by MDR-AB. Carbapenem Resistant A. baumannii (CRAB) is now emerging as a potential threat and it is usually resistant to almost all antimicrobial classes except colistin and tigecycline. The most important mechanism of CRAB is enzyme inactivation by the production of β-lactamases, which hydrolyze the carbapenams. These hydrolyzing enzymes include MBL and class D β-lactamases (widespread). The main gene clusters responsible for this resistance are blaOXA-23-, blaOXA-24/40- and blaOXA-58like gene clusters, identified either in the chromosome or in plasmids of A. baumannii strains [8]. Colistin is the last resort for treatment of multidrug-resistant A. baumannii. Unfortunately, resistance to colistin has been reported all over the world. The highest resistance rate was reported in Asia, followed by Europe. The mechanism of resistance might be loss of lipopolysaccharide or/and the PmrAB two-component system [12].


Genotype and phenotype of MDR *A*. *baumannii* in patients with VAP:

Different genotypes and phenotypes were reported by various studies from India and overseas. Royer *et al* reported all CRAB carbapenem isolates of *A*. *baumannii* were OXA-23 producers [Molecular typing: clone A (clinical) and H (surface)] [13]. Baker *et al.* reported production of carbapenemases MBLs in *Acinetobacter* (blaVIM2) [14]. Patro *et al.* and Khelgi *et al.* quoted AmpC β -lactamase and


MBL was positive MDR-AB with VAP [7, 15]. Joseph et al and Khurana et al. noted ESBL, AmpC and carbapenemase genes in their study of MDR Acinetobacter spp [16, 6]. Banerjee et al. (2018) reported significant patients with Hospital Acquired Pneumonia (HAP) with MDR Acinetobacter spp. with imipenem resistance in majority of isolates (bla_{IMP}, bla_{VIM}, bla_{NDM-1} and bla_{OXA-23-like} genes) [17]. Ghada et al. observed carbapenems resistant isolates were positive for blaOXA-51- like gene, blaOXA-23 like gene, blaOXA-58 among MDR isolates of Acinetobacter [18]. Dey et al. reported AmpC β-lactamases and MBLs producing Acinetobacter isolates in their study [19]. Thakuria et al. (2013) and De et al. (2018) concluded that there was carbapenemase producers showed high degree of cross resistance to antibiotics (46%) in their cohort [20, 21]. Goel et al. (2012) found presence of MBLs in 62.96% of A. baumannii isolates [22]. Karampatakis et al. (2017) reported carbapenem-resistant (CR) strains with VIM and OXA-23 carbapenemases [23]. Singh et al in their study stated that, the gene clusters responsible for this resistance were blaOXA-23-, *bla*OXA-24/40 and *bla*OXA-58-like gene clusters [8]. Srinivasan et al observed presence of blaOXA-23 and ISAba1 linked blaOXA-66 in Acinetobacter spp. with imipenem resistance. MDR had blaADC-25, class 1 integron-borne aminoglycoside modifying enzymes and sense mutations in *gyrA/parC* and active efflux (*adeB* efflux gene) [24]. Fatma et al. reported meropenem resistance was associated with AmpC β -lactamase, MBLs and Efflux pump Acinetobacter isolates. Ramoul et al. reported blaOXA-51, blaOXA-23 and blaTEM-1 gene in their Acinetobacter isolates [4]. Ganjo et al. quoted A. baumannii with bla_{OXA-23-like} and bla_{OXA-24-like} gene with majority of bla_{OXA-23-like} isolates had the ISAba1 insertion sequence which is responsible for carbapenem resistance [25]. Mohammad *et al.* reported presence of types A, B, C, D, E, *tet A* and *tet B* genes in their study of *A. baumannii* isolates [26]. European clones I to III, carbapenem-resistant genotypes and novel international clone was quoted by Petersen *et al.* [27]. Production of class D OXA carbapenemases and class B MBL plays a predominant role in contributing to carbapenem resistance to *A. baumannii* worldwide (Fig. 1).

Prevalence of MDR-Acinetobacter VAP:

Various factors affect the incidence of MDR VAP due to *A* spp. including, criteria, ICU protocols, implementation of VAP bundle, ICU setting and antimicrobial policy. The rate of MDR VAP due to *A. baumannii* is more in developing countries as compared to western world and developing country. [28, 15, 6, 17, 29, 31, 32, 4, 14, 26, 33, 18, 34, 21, 19, 35, 7, 25, 36, 37, 38] (Fig. 2).

© Journal of Krishna Institute of Medical Sciences University

Ghada E et al , 100

Fig. 2: Prevalence of MDR Acinetobacter in Various Studies

Drugs Resistance Pattern of MDR-AB in VAP:

A. baumannii is an opportunistic pathogen with increasing clinical significance, particularly in intensive care patients, causing nosocomial infections including VAP. The organism has the potential to persist in hospital milieu for many days. Many Acinetobacter spp are resistant to frequently used antibiotics like aminopencillins, ureidopencillins, cephalosporins and aminoglycosides. Carbapenems, β-lactam/β-lactamase inhibitor combinations and tetracyclines like minocycline and tigecycline and colistin are the commonly used against severe A. baumannii infections. Fatma et al (2014) (Egypt) reported 75% of MDR-AB isolates. A. baumannii exhibited high resistance rate to imipenem (66.6%), meropenem (73.3%) and cefazolin and cephalothin (100%) with moderate susceptibility

to tetracycline (40%) and gentamicin (33.3%). Total 44.4% A. baumannii were positive for AmpC β -lactamase and 55.6% for MBLs. The efflux pump was detected in 77.8% of isolates [4]. Srinivasan et al. (2009) quoted MDR- AB in 79.5% with (blaOXA-23 in 13% and ISAba1 linked blaOXA-66 in 79.5%) isolates with high level imipenem resistance. The OXA producing isolates, had multidrug resistance by *bla*ADC-25, class 1 integron-borne aminoglycoside modifying enzymes, presence of sense mutations in gyrA/parC and involvement of active efflux (with evidence for the presence of *adeB* efflux gene) [24]. Karampatakis et al. (2017) reported Carbapenem-resistant (CR) strains, VIM and OXA-23 carbapenemases among A. baumannii [23]. Royer et al. (2015) (Brazil) reported that, the VAP caused by carbapenem resistant *A. baumannii* (OXA-23) [13]. Ramoul *et al.* (2013) reported that, the *A. baumannii* are resistant to all β -lactams (*bla*OXA-51 gene, *bla*OXA-23 and *bla*TEM-1 [39]. Mohammad *et al.* (2014) Iran quoted, 89% of *A. baumannii* were resistant to tetracycline 35% to Minocycline 25% to doxicycline and were sensitive to tigecycline [tet B (87.6%) and *tet* A (2.2%) genes and coexistence of *tet* A and tet B (1.1%)]. Distribution of REP-types among *A. baumannii* isolates was types A (40%), B (30%), C (10%), D (5%) and E (5%). They concluded that,

tet A and *tet B* genes play an important role in the induction of resistance for tetracyclines [26].

The various studies have reported the drug resistance to Carbapenem, β -lactam and Tetracycline for *A. baumannii* [13, 14, 6, 17, 16, 36, 40, 38, 18, 19, 20, 31, 41, 4, 25, 26]. We compared the various studies in reference to incidence, risk factors, genotype, phenotype, drug resistance pattern, preventive strategy of MDR-Acinetobacter associated ventilator associated pneumonia in different parts of the world (Table 1).

 Table 1: Comparison Prevalence, Risk Factors, Genotypes of MDR Acinetobacter Associated with VAP

Refe- rences	Type of study	Patients (n)	Prevalence of VAP & MDR- <i>Ab</i>	Risk factors for VAP	Phenotype and genotype
13	Cohort of (14 months)		carbapenem resistant Ab.	Trauma and inappropriate antimicrobial therapy	All carbapenem resistant were OXA-23 producers; Molecular typing: clone A (clinical) and H (surface)
14	Prospective	117 <i>Acinetob</i> <i>acter</i> spp. (10.6%)	66.7% resistant to imipenem (MBL producers)	Production of carbapenemases 15.1% of Ab: blaVIM2	Production of carbapenemases, especially MBLs. <i>Acinetobacter</i> isolates were highly resistant: 80.8%
7	Cross- sectional study (2 years)	100	The prevalence of VAP was 35% MDR: 60.87%	<i>Acinetobacter</i> spp. 10 (31.25%), AmpC β-lactamase: 35.29%. MBL: 17.64%. <i>Acinetobacter</i> spp. showed 100% resistance to ceftazidime, amikacin and ciprofloxacin	
28	Retrospective	n=108 (Ab: 6.85%)	MDR: 70%	Risk factors: Duration of intubation and inappropriate antibiotics; Crude mortality rate was over 70%	
15		120 33 patients had VAP	VAP with MDR pathogens (Ab) spp: 37.83%	MBL AmpC β- lactamases	MBL was produced by 44.44% of <i>Acinetobacter</i> spp and AmpC β- lactamases 71.43%

JKIMSU, Vol. 8, No. 3, July-September 2019

Refe- rences	Type of study	Patients (n)	Prevalence-of VAP & MDR- <i>Ab</i>	Risk factors for VAP	Phenotype and genotype
6	5-year period	of VAP 11.9/1000 days	A. baumannii (54%)	A high rate of MDR ESBL, AmpC and carbapenemase genes	
16	Prospective (15 months)			Acinetobacter spp: late-onset VAP	Production of ESBL, AmpC β lactamases and MBL
17	A laboratory- based audit 5 years	993 cases (100) isolates of Ab.	88.02% MDR and 61.97% XDR	Longer duration of hospital stay: 88.02% MDR and 61.97% XDR	VAP resistant to imipenem and 88.02% MDR and 61.97% XDR. (bla _{IMP} (89%), bla _{VIM} (51%), bla _{NDM-1} (34%), & bla _{OXA-23-} _{like} (93%) genes)
18	Descriptive, cross- sectional	44	<i>A. baumannii</i> isolates (100%) were (MDR).	Age>40, Length of hospital stay, Prior use of antibiotics	Carbapenems resistant isolates: <i>bla</i> OXA-51- like gene, <i>bla</i> OXA-23 like gene, <i>bla</i> OXA-58, Colistin sensitivity: 93.2%
19	Prospective	97	VAP: 45.4% and MDR Ab: (47.9%)	Stress-ulcer prophylaxis, use of antibiotics, Re-intubation	30.43% <i>Acinetobacter</i> spp : AmpC β lactamases and MBLs: 21.74%
21	Cross- sectional	130	VAP: 40.8%, late-onset VAP: 81.13%	Diabetes mellitus, advancing age (>60 yrs), COPD	Acinetobacter spp:33.96% Carbapenem resistance: 46% MDR-Ab: 70.37%
29	Retrospective	43 (two- year)	<i>Ab:</i> 41.8%	Resistant antibio- type, MV	Most of <i>A. baumannii</i> isolates were MDR.
20	Prospective one year	100	A. baumannii: 7.55%		Carbapenemase producers showed cross resistance
42	Retrospective	134	Acinetobacter spp. (60%)		Mortality : 46%
31	Prospective	60	head injury, cerebral hemorrhage and COPD		MDR-AB VAP cases: 11.6%

Refe- rences	Type of study	Patients (n)	Prevalence-of VAP & MDR- <i>Ab</i>	Risk factors for VAP	Phenotype and genotype	
40	Prospective		VAP was 42.5% N	1DR-AB: 66.7%	GNB:78.6% <i>A. baumannii</i> : 32.1%	
30	Prospective	95	40.1 VAP infections/1000	Longer ICU stay Elderly patients	Acinetobacter species: 53.2% MDR:27.3%	
43	Prospective	VAP 4.1-2	25.3/1000 Days		<i>A. baumannii</i> : 100%. MDR:55%-76%	
34	Retrospective	132	MDR 72.7% Increased ICU statime		y and longer intubation	
32	Cross- sectional	100 patients	VAP: 44.2% Ab. :18%	Age, COPD, DM, MOF, duration of MV	Acinetobacter spp were the most resistant pathogens	
44	Retrospective	54	Male, high APAC failure and low pla			
45	Prospective (13 months)	202	VAP: 14.85% (23.2 VAP/1000 VD	Reintubation and tracheostomy prolonged duration of mechanical ventilation, ICU stay associated with MDR-AB (48.21%)		
22	Prospective	53	MDR-AB 49.09%	1	MBLs: 62.96%	
46	Prospective (10 mths)	140 patients 28 (20%) develope d VAP.	VAP was 21.875 per 1,000 ventilator days.	Prior antibiotic therapy, hospitalization and MV, supine head position, reintubation unconsciousness	late onset VAP: 60.7% <i>Acinetobacter</i> spp. with late onset VAP, MDR: 69.7%, MBL: 30.23%, MBL- 50%	
35	Retrospective cohort study two-year	60	MDR: 13.3% XDR: 68.3%	Higher SAPS II score, increased hospital LOS prior to ICU, MV, Carbapenem use; mortality due to drug-resistant <i>A. baumannii</i> VAP was high; Potentially pandrug resistant:18.3%		
23	Cross- sectional (18 month)	(56) CARB resistant	VIM and OXA-23 carbapenemases <i>A. baumannii</i> (88.9 %). <i>A. baumannii</i> displayed phenotypic diversity in AMK, GEN, SXT, tobramycin and rifampicin (8 clusters).			

Refe- rences	Type of study	Patients (n)	Prevalence-of VAP & MDR-Ab	Risk factors for VAP	Phenotype and genotype
8	Review		Gene clusters responsible for this resistance are <i>bla</i> OXA-23-, <i>bla</i> OXA-24/40-, and <i>bla</i> OXA-58-like gene clusters		
24	Cross- sectional	83	<i>bla</i> OXA-23 and IS <i>Aba1</i> linked <i>bla</i> OXA-66: high level imipenem resistance; MDR: <i>bla</i> ADC-25, class 1 integron-borne aminoglycoside modifying enzymes, presence of sense mutations in <i>gyrA</i> / <i>parC</i> and involvement of active efflux (with evidence for the presence of <i>adeB</i> efflux gene). MDR:79.5%		
4	Cohort	72	Carbapenem resistant: 45 MDR- Ab: 75%	AmpC β-lactamase: 44.4% positive; MBLs: 55.6%-carbapenem resistance; Efflux pump: 77.8%; MBLs and AmpC β-lactamase: meropenem resistance	
39	Cohort (15 month)	23	β-lactams resistant: 19	<i>bla</i> OXA-51 gene was found in all isolates, <i>bla</i> OXA-23: 14 and <i>bla</i> TEM-1 in:3	
35	Cohort (21 months)	120	IMP resistant: 92%	<i>A. baumannii</i> - carried $bla_{OXA-23-like}$ gene and $bla_{OXA-24-like}$. All 101 $bla_{OXA-23-like}$ -positive isolates had the ISAba1 insertion sequence, $bla_{OXA-23-like}$ gene for carbapenem resistance	
26	Cross- sectional (2 years)	100	89% were resistant to tetracycline 35% to Minocycline 25% to doxicycline All isolates were sensitive to tigecycline		Types A (40%), B (30%), C (10%), D (5%) and E (5%). <i>tet A</i> and <i>tet B</i> genes
47	Prospective (1 year)	105 VAP: 57.14%	VAP 31.7/1000 day	Duration of MV Trauma	Acinetobacter spp: 34.28% Mortality: 48.33%
33	Descriptive	74	MDR: 100%	head trauma and stroke	A. baumannii : 21.0%
36	Muticentric	2,445	<i>Acinetobacter</i> : 67.3% Imipenem resistance; MDR: 82%, XDR: 51.1%		<i>Acinetobacter</i> spp were the most frequent isolates
48	Prospective (20 months)	84	VAP rates 6.242/ 1000	Mortality: 61.84%	<i>A. baumannii</i> : 37.63% Majority of them were MDR
49	Prospective (2 yrs)	144	Early-onset VAP: 24.3% ; Late-onset VAP: 26.4%		Acinetobacter spp was the most common pathogen in VAP

Refe- rences	Type of study	Patients (n)	Prevalence-of VAP & MDR- <i>Ab</i>	Risk factors for VAP	Phenotype and genotype
27	Cross- sectional	65	Higher APACHE	II scores	European clones I to III, Carbapenem-resistant (novel)
37	Cross- sectional	66	Acinetobacter: 26%		MDR: 86.36%
50	Review article 8 (2008-2014)	High rate of resistance to all antibiotics		Increase in imipenem and meropenem resistance from 2010-2011 and 2012-2013	
41	systematic revi	ew of 41 st	udies	CRAB: 64.91%; MDR-AB: 58.51%	
38	IR-MDR A. baumannii	55% of <i>A. baumannii</i> isolates were resistant to imipenem, and 74% had a MDR phenotype		Kuwait (42%), Pakistan (100%), Turkey (98%), UAE (76%), and Saudi Arabia (63%).	

Risk factors for developing MDR-VAP due to *Acinetobacter* **spp:**

VAP affects just about 30% of intubated mechanically ventilated patients in ICUs worldwide. Advancing age, male gender, trauma, cerebral hemorrhage, impaired consciousness, higher APACHE II scores, higher SAPS II score, increased hospital stay prior to ICU, prolonged duration of MV, supine head position, prior antibiotic therapy, inappropriate antimicrobial therapy, carbapenem use, longer intubation time, reintubation, tracheostomy renal failure COPD, DM, MOF, stress ulcer prophylaxis and low platelet were found to be associated with the risk of MDR-AB. Occurrence of MDR, XDR and panresistant A. baumannii has been observed in ICU settings. Risk factors associated with the resistance acquisition mainly include injudicious and broad spectrum antibiotic exposure, prolonged stay in the ICUs, mechanical ventilation

and drifting from local antibiogram based antibiotic policies. Investigations of several outbreaks of resistant infections have been recognized to direct contact (bacterial flora of moist regions of skin like axilla and groin). The contamination of hands of Health Care Workers (HCW) occurs even after minor contact with colonized patients [13, 28, 16, 17, 18, 19, 21, 29, 31, 30, 34, 32, 45, 35, 47, 27, 46].

Incidence of VAP and MDR Acinetobacter:

Patro *et al* (2018) in their study quoted 35% VAP rate with *Staphylococcus aureus* were common in early-onset VAP and nonfermenters in late-onset VAP with 60.87% were MDR *Acinetobacter* and positive for AmpC β -lactamase and MBL. *Acinetobacter* spp. showed 100% MDR and sensitive to polymyxin B and tigecycline [7]. A study from India quoted VAP rate of 11.9/1000 VDs with MDR-AB (54%) with presence of ESBL, AmpC and carbapenemase genes [6]. Rit *et*

al (2014) reported 21.875 per 1,000 ventilator days (20%) incidence rate of VAP (Acinetobacter spp. MBL: 30.23%) [46]. John et al reported 14.85% (23.2 VAP episodes per 1000 ventilator days) incidence of VAP (MDR-AB: 48.21%) [45]. Goel et al. quoted MDR-AB (49.09%) were the most common pathogens isolated producing MBLs [22]. Khalid et al reported MDR-ABi associated VAP were 100% resistant to ampicillin/sulbactam, piperacillin, cefuroxime [33]. A study from North India by Banerjee et al. quoted high prevalence of Acinetobacter related Hospital Acquired Pneumonia (HAP) with resistance to imipenem $(bla_{IMP}, bla_{VIM}, bla-NDM-1 and bla_{OXA-23-like} genes)$ [17]. Pai et al. (2012) VAP was found to be 44.2% of patients. Acinetobacter species were the most resistant pathogens with high mortality [32]. Ghada et al. in their study stated that, all A. baumannii isolates were multidrug resistant and 75% were resistant to carbapenems but were sensitive to colistin (93.2%) (blaOXA-51- like gene, blaOXA-23 like gene, blaOXA-58) [18]. Dey et al reported incidence of VAP was found to be 45.4% among the mechanically ventilated patients with 47.9% MDR-Acinetobacter spp (AmpC β lactamases MBLs) [19]. Thakuria *et al.* reported 51%VAP rate with A. baumannii were carbapenemase producers [20]. A study from North India, quoted A. baumanii in 20.9% with VAP. The incidence of VAP in Indian ICUs is ranged from 30% to 73%. Compared to Western data, Gram negative organisms are the most common etiological agents in both early and late VAP in India [51]. Kumari et al reported VAP rate of 13% with predominance of Gram negative organisms including Acinetobacter spp. (13, 21%) [42]. Shaik et al. quoted that, the late onset VAP

(60.8%) predominated by Gram negative Bacteria (MDR-AB: 32.1%) [40]. Mathai et al reported VAP rate of 38% (40.1 VAP infections/1000 ventilation days) predominantly caused by GNB (Acinetobacter species: 53.2%) with 27.3% of isolates demonstrated multidrug resistance [30]. Asir et al reported Incidence of VAP 15.2/1000 ventilator days (A. baumannii: 100%) [43]. Karampatakis et al. (2017) stated that, OXA-type carbapenemases are present with highest prevalence worldwide of them bla OXA-23-like, bla OXA-58-like and VIM are the most important genes found in Greece [23]. Ganjo et al. (2016) (Iraq) reported 100% of A. baumannii isolates had $bla_{\scriptscriptstyle OXA-51-like}\,genes\,(bla_{\scriptscriptstyle OXA-23-like}\,gene,\,bla_{\scriptscriptstyle OXA-24-like}\,genes$ VIM and IMP MBLs bla_{OXA-58-like}, upstream ISAba1 insertion) [25]. Ghosh et al. (2018) (India) quoted VAP rate of 6.242/ 1000 ventilator days with mortality of 61.84%. A. baumannii (37.63%) was the commonest organism isolated [48]. Doo et al. (2011) in their multicentric study stated that, major bacterial isolates from VAP cases in Asian countries were due to Acinetobacter spp. (MDR: 82% and XDR: 51.1%) [36]. Ranjan et al. (2014) quoted 57.14% (VAP was 31.7/1000 ventilator days) incidence of VAP in their study (Acinetobacter spp: 34.28%) [47]. Aušra et al. (2019) quoted 13.3% MDR, 68.3% XDR and 18.3% potentially pandrug-resistant A. baumannii [35]. Teerawattanapong et al. (Southeast Asia) (2018) in their systematic review of 41 studies found that, a cumulative incidence of HAI caused by A. baumannii in Southeast Asia was substantially higher with carbapenem-resistance (64.91%) [41]. Maryam et al (2016) in their metaanalysis (2016) of Imipenem-resistant MDR A. baumannii observed that, the 55% imipenem

resistance [38]. Moradi et al. in their review article of 87 papers (2008-2014) from Iran observed an increase in antimicrobial resistance in MDR-AB isolates [50]. Mathaia et al. (2012) late-onset VAP developed in 76.85% due to Acinetobacter (MDR-AB: 70%) [28]. A study from India stated that the production of AmpC β-lactamases and MBLs were responsible for the MDR Acinetobacter spp and associated with late-onset VAP (MBL: 20% and AmpC β-lactamases: 60.7%) [16]. Ahmed et al. in their study, isolated 80.8% MDR Acinetobacter with Imipenem-resistant (MBL producers blaVIM2) [14]. De et al. (2018) quoted 40.8% incidence of VAP (late-onset VAP: 81.13%) caused by MDR-Acinetobacter spp (70.37%) and were carbapenem resistant [21]. Khelgi et al. (2017) reported 27.5% of patients to have VAP (Acinetobacter spp.37.83%) producing MBL and AmpC β-lactamases. ICU infections are important cause of mortality and morbidity. Globally Gram positive organisms are prevalent in ICUs, where as Indian ICUs are overwhelmed with Gram negative organisms including MDR-Acinetobacter spp [15]. Acinetobacter are among the most notorious bacteria isolated in hospital infections, particularly in developing countries. Combined therapy has been an alternative for multi-drug-resistant Acinetobacter. Tigecycline and colistin can be valuable therapeutic options for the treatment of MDR-Acinetobacter infections [52]. Treatment options are limited; carbapenems and colistin are the current agents of choice for the most drugresistant infections [8]. Upcoming promising drug strategies are new β-lactamase inhibitors, Inhibitors of aminoglycoside-modifying enzymes and multidrug efflux pumps, ukaryotic antimicrobial peptides. To manage patients with

VAP comprehensively, requires a multidisciplinary team effort and approach of clinical microbiologists, physicians and hospital infection control associate.

Conclusion:

Multi-drug, extended-drug or pan-drug resistance makes treatment a real medical challenge in MDR-VAP due to Acinetobacter. Inadequate infection control facilities and policies, lack of resources, ignorance for preventive strategy are the main reasons for the rise of MDR organisms in ICU settings. The periodic active surveillance of the ICU environment including the ventilator circuits, respiratory therapist may cut down the significant proportion of ventilator associated pneumonia. There is pressing need to implement an antimicrobial stewardship program supported by the local microbial data integrated with international guidelines to optimize the antimicrobial use may improve outcomes in patients with VAP due to MDR-Acinetobacter. The genotype $bla_{{}_{\mathrm{OXA-23-like}}}$ and $bla_{{}_{\mathrm{OXA-51-like}}}$ genes are the most prevalent genotype in various studies. The a surveillance program of ICU acquired infections, antibiotic usage and molecular typing of MDR A. baumannii isolates may help for making hospital antibiotic policies. The empirical therapy should be broadened (anti-pseudomonal cephalosporin, carbapenem, or β lactamase inhibitor plus fluoroquinolone, or aminoglycoside plus linezolid) to cover the most probable pathogens including MDR. Tigecycline and colistin should be reserved for resistant cases. Mortality in VAP cases is high due to the increasing incidence of multidrug-resistant organisms in ICUs. Various studies emphasized on appropriate use of antimicrobial therapy to fight against these MDR-*Acinetobacter* pathogens.

Key Message:

Judicious use of antimicrobials, rotational antibiotic therapy, novel preventive, treatment strategies, antibiotic recycling, combinations of antibiotic and development of novel antimicrobial agents will be beneficial to fight against MDR-AB causing ventilator associated pneumonia at large. Early and correct diagnosis of VAP is a challenge for choosing an optimal antibiotic treatment and cure.

References

- 1. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. *Clin Microbiol Rev* 2017; 30(1):409-447.
- 2. Daly AK, Postic B, Kass EH. Infections due to organisms of the genus Herellea.B5W and B anitratum. *Arch Intern Med* 1962; 110:580-591.
- 3. Matthew E Falagas, Ioannis A Bliziotisand Ilias I Siempos. Attributable mortality of Acinetobacter baumannii infections in critically ill patients: a systematic review of matched cohort and case-control studies. *Crit Care* 2006, 10(2):R48.
- Fatma Al-Zahraa M. Gomaa, Wael M. Tawakol and Fatma I. Abo El-Azm. Phenotypic and genotypic detection of some antimicrobial resistance mechanisms among multidrug-resistant Acinetobacter baumannii isolated from immunocompromised patients in Egypt. *Egyptian J Med Microbiol* 2014; 23(4):99-110.
- Horan T, Gaynes R.Survillence of Nosocomial infection. Mayhall C, ed. Hospital epidemiology and infection control. 3rd ed.Philadelphia: Lippincott Williams and Wilkins. 2004:1659-702.
- 6. Khurana S, Mathur P, Kumar S, Soni KD, Aggrawal R, Batra P *et al.* Incidence of ventilator-associated pneumonia and impact of multidrug-resistant infections on patient's outcome: Experience at an Apex Trauma Centre in North India. *Indian J Med Microbiol* 2017; 35:504-10.
- 7. Patro S, Sarangi G, Das P, Mahapatra A, Mohapatra D, Paty BP, *et al.* Bacteriological profile of ventilator associated pneumonia in a tertiary care hospital. *Indian J Pathol Microbiol* 2018; 61(3):375-379.
- Singh H, Thangaraj P, Chakrabarti A. Acinetobacter baumannii: A brief account of mechanisms of multidrug resistance and current and future therapeutic management. *J Clin Diag Res* 2013; 7(11): 2602-2605.

- Nashwa M. Alkasaby and Maysaa El Sayed Zaki. Molecular Study of Acinetobacter baumannii Isolates for metallo β -lactamases and extended-spectrum β lactamases genes in intensive care unit, Mansoura university hospital, Egypt. *Int J Microbiol* 2017; 2017: 3925868.
- Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 2017; 7:55.
- 11. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. *Clin Infect Dis* 2006; 43(Suppl 2): S49-56.
- 12. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012; 67(7):1607-15.
- 13. Royer S, Faria AL, Seki LM, Chagas TP, Campos PA, Batistão DW *et al.* Spread of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clones in patients with ventilatorassociated pneumonia in an adult intensive care unit at a university hospital. *Braz J Infect Dis* 2015; 19(4):350-357.
- Baker AM, Makled AF, Salem EH, Salama AA, Ajlan SE. Phenotypic and molecular characterization of clinical Acinetobacter isolates from Menoufia University Hospitals. *Menoufia Med J* 2017; 30(4):1030-1036.
- 15. Khelgi A, Prathab AG. Bacteriological profile of ventilator associated pneumonia in a tertiary care hospital of South India with special reference to multi drug resistant pathogens. *Int J Curr Microbiol App Sci* 2017; 6(11):541-548.

- Joseph N, Sistla S, Dutta T, Badhe A, Rasitha D, Parija S. Ventilator-associated pneumonia in a tertiary care hospital in India: role of multi-drug resistant pathogens. *J Infect Dev Ctries* 2010; 4(4):218-225.
- Banerjee T, Mishra A, Das A, Sharma S, Barman H, Yadav G. High prevalence and endemicity of multidrug resistant Acinetobacter spp. in intensive care unit of a tertiary care hospital, Varanasi, India. *J Patho* 2018; 2018:9129083.
- Ghada E. Amr and Ghada M. Abdel Razek. Characterization of carbapenem resistant Acinetobacter baumannii causing ventilator associated pneumonia in ICUs of Zagazig University Hospitals, Egypt. *Int J Curr Microbiol App Sci* 2016; 5(12): 660-671.
- 19. Dey A, Bairy I. Incidence of multidrug-resistant organisms causing ventilator-associated pneumonia in a tertiary care hospital: A nine months' prospective study. *Ann Thoracic Med* 2007; 2(2):52-57.
- Thakuria B, Singh P, Agrawal S, Asthana V. Profile of infective microorganisms causing ventilatorassociated pneumonia: A clinical study from resource limited intensive care unit. J Anaesthesiol Clin Pharmacol 2013; 29:361-6.
- 21. De A, Samaddar A, Patwegar S, Baveja S. Antibiotic susceptibility pattern of bacteria isolated from adult patients with ventilator associated pneumonia (VAP) in intensive care units in a tertiary care hospital. *J Med Sci Clin Res* 2018; 6(4):1104-1111.
- Goel V, Hogade SA, Karadesai SG. Ventilator associated pneumonia in a medical intensive care unit: Microbial aetiology, susceptibility patterns of isolated microorganisms and outcome. *Indian J Anaesth* 2012; 56(6):558-562.
- 23. Karampatakis T, Geladari A, Politi L, Antachopoulos C, Iosifidis E, Tsiatsiou O. Cluster-distinguishing genotypic and phenotypic diversity of carbapenem-resistant Gram-negative bacteria in solid-organ transplantation patients: a comparative study. *J Med Microbiol* 2017; 66:1158-1169.
- 24. Srinivasan VB, Rajamohan G, Pancholi P, Stevenson K, Tadesse D, Patchanee P, *et al.* Genetic relatedness and molecular characterization of multidrug resistant Acinetobacter baumannii isolated in central Ohio, USA. *Ann Clin Microbiol Antimicrob* 2009, 8:21.
- 25. Ganjo AR, Maghdid DM, Mansoor IY, Kok DJ, Severin JA, Verbrugh HA, *et al.* OXA-Carbapenemases present in clinical Acinetobacter baumannii-calcoaceticus complex isolates from patients in Kurdistan Region, Iraq. *Microb Drug Resist* 2016; 22(8):627-637.

- 26. Maleki MH, Sekawi Z, Soroush S, Azizi-Jalilian F, Asadollahi K, Mohammadi S, *et al.* Phenotypic and genotypic characteristics of tetracycline resistant Acinetobacter baumannii isolates from nosocomial infections at Tehran hospitals, Iran. *J Basic Med Sci* 2014; 17(1):21-26.
- 27. Petersen K, Cannegieter SC, van der Reijden TJ, van Strijen B, You DM, Babel BS, *et al.* Diversity and clinical impact of Acinetobacter baumannii colonization and infection at a Military Medical Center. *J Clin Microbiol* 2011; 49(1):159-166.
- Mathai AS, Oberoi A, Madhavan S, Kaur P. Acinetobacter infections in a tertiary level intensive care unit in Northern India: Epidemiology, clinical profiles and outcomes. *J Infect Public Health* 2012; 5(2):145-152.
- 29. Prashanth K, Badrinath S. Nosocomial infections due to Acinetobacter species: clinical findings, risk and prognostic factors. *Indian J Medical Microbiol* 2006; 24(1):39-44.
- Mathai AS, Phillips A, Isaac R. Ventilator associated pneumonia: A persistent healthcare problem in Indian Intensive Care Units. *Lung India* 2016; 33(5):512-6.
- 31. Shete VB, Ghadage DP, Muley VA, Bhore AV. Multidrug resistant Acinetobacter ventilator-associated pneumonia. *Lung India* 2010; 27(4): 217-220.
- 32. Jakribettu RP, Boloor R. Characterisation of aerobic bacteria isolated from endotracheal aspirate in adult patients suspected ventilator associated pneumonia in a tertiary care center in Mangalore. *Saudi J Anaesth* 2012; 6(2): 115-119.
- 33. Cheema UK, Saleem S, Chaudary MA. Isolation and antimicrobial susceptibility profile of microorganisms isolated from ventilator associated pneumonia patients. *J Infect Dis Treat* 2018; 4(13):1-5.
- Hosamirudsari H, Forghanib S, Akbarpourc S. Multidrug resistant ventilator associated pneumonia: risk factors and outcomes *Canadian J Infect Control* 2018; 33(1):20-24.
- 35. Ciginskiene A, Dambrauskiene A, Rello J, Adukauskiene D. Ventilator-associated pneumonia due to drug-resistant Acinetobacter baumannii: risk factors and mortality relation with resistance profiles, and independent predictors of in-hospital mortality. *Medicina (Kaunas)* 2019; 55(49):1-13.
- Chung DR, Song JH, Kim SH, Thamlikitkul V, Huang SG, Wang H, *et al.* High prevalence of multidrugresistant nonfermenters in hospital-acquired pneumonia in Asia. *Am J Respir Crit Care Med* 2011; 184(12):1409-1417.

- 37. Ahmed NH, Hussain T, Biswal I. Antimicrobial resistance of bacterial isolates from respiratory secretions of ventilated patients in a multi-specialty hospital. *Avicenna J Med* 2015; 5(3):74-78.
- Pourhajibagher M, Hashemi FB, Pourakbari B, Aziemzadeh M, Bahador A. Antimicrobial resistance of Acinetobacter baumannii to imipenem in Iran: A systematic review and meta-analysis. *Open Microbiol* J2016; 10:32-42.
- 39. Ramoul A, Hammami S, Dekhil M, Aimiri S, Slim A, Boubaker IBB. Phenotypic and genotypic characterization of clinical multidrug resistant Acinetobacter baumannii from Algerian intensive care units. *Afr J Microbiol Res* 2013; 7(10):868-874.
- 40. Usman SK, James PM, Rashmi M. Clinical and microbiological facets of ventilator associated pneumonia in the main stream with a practical contact. *Int J Res Med Sci* 2014; 2(1):239-245.
- 41. Teerawattanapong N, Panich P, Kulpokin D, Na Ranong S, Kongpakwattana K, Saksinanon A, *et al.* A systematic review of the burden of multidrug-resistant health care-associated infections among intensive care unit patients in Southeast Asia: The rise of multidrugresistant Acinetobacter baumannii. *Infect Control Hosp Epidemiol* 2018; 39(5):525-533.
- 42. Kumari M, Rastogi N, Malhotra R, Mathur P. Clinicomicrobiological profile of healthcare associated pneumonia in critically ill patients at level-I trauma centre of India. *J Lab Physicians* 2018; 10(4):406-409.
- 43. Asir JG, Jayasekaran V, Shanmugam V, Elan S, Kanungo R. Incidence of ventilator associated pneumonia and drug-resistant bacterial preponderance; a fact to ponder. *Int J Res Med Sci* 2018; 6(9):3160-3165.
- 44. Sengul A, Sengul E, Baris SA, Hayirlioglu N. Factors associated with mortality in ventilator associated pneumonia of multidrug resistant Acinetobacter baumannii. *Euro Resp J* 2013; 42: P2747.

- 45. John J, Thomas SM, Mathai AS, Rajkumar A. A prospective study on incidence and microbiological profile of ventilator associated pneumonia in the intensive care unit of a tertiary care centre. *Int J Contemp Med Res* 2017; 4(9):1840-1843.
- 46. Rit K, Chakraborty B, Saha R, Majumder U. Ventilator associated pneumonia in a tertiary care hospital in India: Incidence, etiology, risk factors, role of multidrug resistant pathogens. *Int J Med Public Health* 2014; 4:51-6.
- 47. Ranjan N, Chaudhary U, Chaudhry D, Ranjan KP. Ventilator-associated pneumonia in a tertiary care intensive care unit: Analysis of incidence, risk factors and mortality. *Indian J Crit Care Med* 2014; 18(4): 200-204.
- 48. Ghosh S, Dhamija A, Dhar D, Basu A, Goel N. Epidemiology and outcome of ventilator associated pneumonia in a tertiary care ICU of India. *Euro Resp J* 2018; 52: PA4717.
- 49. Jovanovic B, Milan Z, Markovic-Denic L, Djuric O, Radinovic K, Doklestic K, *et al.* Risk factors for ventilator-associated pneumonia in patients with severe traumatic brain injury in a Serbian trauma centre. *Int J Infect Dis* 2015; 38:46–51.
- 50. Moradi J, Hashemi FB, Bahador A. Antibiotic resistance of Acinetobacter baumannii in Iran: A systemic review of the published literature. *Osong Public Health Res Perspect* 2015; 6(2):79-86.
- Chaudhry D, Prajapat B. Intensive care unit bugs in India: How do they differ from the western world? J Assoc Chest Physicians 2017; 5:10-7.
- 52. Tuon FF, Rocha JL, Merlini AB. Combined therapy for multi-drug-resistant Acinetobacter baumannii infection – is there evidence outside the laboratory? J Med Microbiol 2015; 64(9): 951-959.

*Author for Correspondence: Dr. Virendra C. Patil, Department of Medicine, Krishna Institute of Medical Sciences, Malkapur-Karad-415110 (Maharashtra) India Email: virendracpkimsu@rediffmail.com Cell: 9890845940